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Abstract: Systems with high level of failures are considered that permanently operate due to
this reason in a transient dynamical regime. In real systems amplitude restrictions for state
variables are inevitable and also the so called overshooting effect is inwardly intrinsic. Therefore
the operation in transient regime can lead to a great number of secondary failures. At the
same time it is known that some classes of the so called desynchronized systems are insensitive
to failures in data communication links. In the paper the notion of quasi-controllability for
desynchronized systems is introduced that allow easy and efficient to estimate the overshooting
measure. This presents the means to design the variety of highly reliable fault-tolerant control
and manufacturing systems.

INTRODUCTION

The realistic approach to the problem of reliability and stability of multicomponent manu-
facturing control systems has to take into account a variety of properties of these systems.
Among them are the possibility of malfunctioning of particular links, asynchronous way
of operation of control devices (e.g., processors) and so on. Traditionally, the reliabil-
ity analysis of complex real systems is based on probabilistic reasoning. Under these
circumstances it is assumed, as a rule, that

• failures in devices are reasonable rare and are independent one from another,

• the greater part of the operational time the system works in a steady state regime.

However, in the last time many examples appear when the difficulties of probabilistic anal-
ysis of complex systems functioning grow to such an extent that no practical conclusions
for realistic situations are possible. Often the behavior of such systems is characterized
by the following features:



• the level of failures or other kind of malfunctions is very high and often faults
correlate one with another,

• in virtue of high frequency of failures the system permanently operates within the
transient regime,

• in virtue of transient operational regime, high amplitudes of the state vector are
possible in the system that can lead to secondary failures because of overshooting
of parameters beyond admissible bounds.

Examples of such a kind of systems are complex flexible industries, man — computer
systems, systems with microprocessor controlled devices, large systems that controlled via
computer networks, and so on (see, e.g., (Bertsekas and Tsitsiklis, 1988)). One way to
overcome difficulties mentioned above is to develop a special hardware. Another way is
to give an adequate mathematical description of corresponding phenomena. The need of
latter forced to appear within last years a new chapter of the control theory — the theory
of the so called desynchronized systems (see, e.g., (Kleptsyn at al., 1984); (Bertsekas and
Tsitsiklis, 1988); (Asarin at al., 1988, 1990); (Krasnoselskii at al., 1991)). The aim of this
paper is to propose some new efficient method to estimate reliability of desynchronized
systems.

DESYNCHRONIZED AND FAULT-TOLERANT SYSTEMS

Consider a system S consisting of N interconnected subsystems S1, S2, . . . , SN , that in-
teract in some discrete time instants {T n}, −∞ < n < ∞. Depending on a problem
formulation, on internal characteristics of the system and other factors the moments of
interacting can be influenced by some deterministic or stochastic law. They can depend
also from the internal state of the system. Denote the value of the state vector of the
subsystem Si on the interval [T n, T n+1) by xi(n), −∞ < n < ∞. It is supposed that
the vector xi(n) takes values in some finite-dimensional space Rdi , where di ≥ 1. In this
case the state space X of the system S can be identified with the Cartesian product
X = Rd1 × Rd2 × · · · × RdN . It is convenient to denote the state vector x ∈ X of the
system S by x = {x1, x2, . . . , xN}, where xi ∈ Rdi , i = 1, 2, . . . , N . In what follows it
will be supposed that the updating of the state vector of the system S happens infinitely
often, i.e., T n →∞ when n→∞.

In the idealistic case, when the system S is absolutely reliable and there are no failures
in it, the change of its state at a moment T n+1 is fulfilled according to the functional law

xnew = f(xold). (1)

Here f : X 7→ X is some function depending on the dynamic characteristics of the system,
xold is the state vector of the system immediately before the updating moment T n+1, and
xnew is the state vector of the system immediately after the updating moment T n+1.
Denote x(n) = xold, x(n+ 1) = xnew. Then for the case of the free-of-faults system S the
following dynamics equation can be written

x(n+ 1) = f(x(n)), −∞ < n <∞. (2)

Now, let us formulate the basic assumption:



let at any moment T n ∈ {T k : −∞ < k < ∞} only few of the subsystems
of the system S update their states following the law (1) — let it will be the
subsystems Si with the indexes from some index set ω(n) ⊆ {1, 2, . . . , N}; and
let the subsystems Sj, j ∈ {1, 2, . . . , N} \ω(n), for a variety of reasons do not
update their state

To describe the dynamics of the system S in this situation it is convenient to use the
coordinate representation of vectors and functions. Let us introduce the following desig-
nations

xold = {xold,1, xold,2, . . . , xold,N},
xnew = {xnew,1, xnew,2, . . . , xnew,N},
x(n) = {x1(n), x2(n), . . . , xN(n)},

x(n+ 1) = {x1(n+ 1), x2(n+ 1), . . . , xN(n+ 1)},
f(x) = {f1(x1, x2, . . . , xN), f2(x1, x2, . . . , xN), . . . , fN(x1, x2, . . . , xN)},
fi : Rd1 × Rd2 × . . .× RdN 7→ Rdi , i = 1, 2, . . . , N.

Then the law of the state vector updating for the system S in coordinate notation takes
the form

xi(n+ 1) =

{
fi(x1(n), x2(n), . . . , xN(n)), if i ∈ ω(n),
xi(n), if i /∈ ω(n).

Introduce for every set ω ⊆ {1, 2, . . . , N} the auxiliary mapping (ω-mixture of the
mapping f):

fω(x) =

{
fi(x1, x2, . . . , xN), if i ∈ ω,
xi, if i /∈ ω.

Then the dynamics equation for the system S under the presence of failures can be written
in the following compact form:

x(n+ 1) = fω(n)(x(n)), −∞ < n <∞. (3)

In the paper for the sake of simplicity the main attention is paid to the case when the
mapping f(·) is linear, i.e., its components fi(·), i = 1, 2, . . . , N , are defined by the
equations

fi(x1, x2, . . . , xN) =
N∑
i=1

aijxj,

where aij, i, j = 1, 2, . . . , N , are scalar entries. Note that the mapping f is uniquely
defined by the matrix A = (aij). To obtain the matrix Aω of the mapping fω it is
sufficient to replace the strings of A with the indexes i /∈ ω by corresponding strings of
the identity matrix I.

Example 1. Let the set ω has a single element, say ω = {i}, i = 1, 2, . . . , N . Then the
matrix Aω takes the form

Aω =



1 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0
...

...
. . .

...
. . .

...
ai1 ai2 . . . aii . . . aiN
...

...
. . .

...
. . .

...
0 0 . . . 0 . . . 1


. (4)



The dynamics of the linear system S under the presence of failures is described by the
equation

x(n+ 1) = Aω(n)x(n), −∞ < n <∞. (5)

Describe another situation in which the dynamics of some system is covered by the
equation (3). Consider a system S the state of which can be influenced by M man-
agers (controllers, processors etc.) at some discrete time instants (updating moments).
Let the set T of all the updating moments can be partitioned into M disjoint subsets
T1, T2, . . . , TM , with the rule of correction of the state of S at the instants in Ti depending
on the wishes of the i-th manager. For any updating moment t ∈ T denote by ω(t) the
set of numbers of the managers governing the system at the instant t. If the wishes of the
managers are the same and they implement them reliably, then the dynamics of the system
S can be described in a traditional way — in terms of the difference equation (2). In the
opposite case the situation is more complicated. Such systems are referred to as desyn-
chronized ones. Assume that the state of S is described by the vector x = {x1, x2, . . . , xN}
in the space RN that is provided with the norm ‖x‖ = |x1|+ |x2|+ · · ·+ |xN |. A function
x(t) corresponding to an admissible dynamics of the system S is by definition piecewise
constant and all its points of discontinuity belong to the set T . The system S is said to
be linear desynchronized if such matrixes Am (m = 1, 2, . . . ,M) can be chosen that at
any instant t∗ ∈ Tm (m = 1, 2, . . . ,M) the following equality is true

x(t∗ + 0) = Amx(t∗ − 0).

Denote by x(t) = S(t; T1, T2, . . . , TM) the output of the system S corresponding to the
initial state x0 = x(0) and to the collection of the sets of updating moments corresponding
to T1, T2, . . . , TM . Let us restrict the consideration to the case when the set of all possible
updating moments coincides with the set N of integers 1,2,. . . . Then we shall come to
conclusion that the dynamics of the system S will be described by the equation (3).

STABILITY AND OVERSHOOTING

Suppose that there are no failures in the system S. In this case stability is one of tra-
ditional and most important characteristics of the ’quality’ of the investigated system.
Surely the high level of failures in subsystems of the system S may cause the destruction
of the stability of the system S. By this reason it is useful to distinguish the class of
systems that are robust with respect to permanently high level of failures. Introduce the
corresponding definition only for linear systems.

Definition 2. A desynchronized system S, whose dynamics is described by the equation
(5) is said to be absolutely asymptotically stable if for any sequences {ω(·) : ω(n) ⊆
{1, 2, . . . , N}} solutions x(n) of the equation (5) tend to equilibrium uniformly with respect
to initial values x(0) from the unit ball in some norm.

Some classes of absolutely stable desynchronized systems were described and investi-
gated in works (Kleptsyn at al., 1984); (Bertsekas and Tsitsiklis, 1988); (Asarin at al.,
1988, 1990); (Krasnoselskii at al., 1991); (Kozyakin, 1991). There was established that for
any absolutely stable desynchronized system S there exists a constant µ <∞, satisfying
the inequality

‖x(n)‖ ≤ µ‖x(0)‖, ∀n ≥ 0, ∀{ω(·)} : ω(n) ⊆ {1, 2, . . . , N}. (6)



The distinguishing of systems possessing the stability property under arbitrary failures in
subsystems does not solve completely the problem of reliability. Modes in stable systems
have ’a good behavior at infinity’; but before that the system works a certain time in the so
called transition regime. The main problem often consists in the presence of the so called
’peak’ effect or ’overshooting’ within the transition regime. The essence of overshooting
is big (however short-lived) increasing of amplitudes of system states before these states
would appear near equilibrium.

Probably, the first examples of linear systems with peaks were mentioned in the works
of Bongiorno and Youla (1968) and Mita (1976). These works had attracted the attention
of different scientists to the peaking effect. In (Polotskii, 1978) and (Zeitz, 1983) the effect
of peaking in some systems with scalar inputs or outputs was studied. Mita and Yoshida
(1980) had noted that the peaks exist in a variety of realistic cases.

The systems with big degree of stability have one important feature: these systems
often have very poor robustness. The latter was noted by Soroka and Shaked (1984),
Olbrot and Cieslik (1988), Lehtomaki at al. (1981). Therefore the necessity of explaining
and investigating this effect has arisen. Partially this was done by Izmailov (1977, 1988).

Definition 3. Overshooting measure ovm(S) of the desynchronized system is by definition
the infimum of the values of µ satisfying the inequality (6).

Obtaining of upper bounds for the overshooting measure ovm(S) is an important stage
in investigation of reliability of desynchronized system.

QUASI-CONTROLLABILITY

This section contains main results that allow to estimate the overshooting for a class of
desynchronized linear systems. Denote by A the set of matrices A of the form {Aω : ω ⊆
{1, 2, . . . , N}}. Evidently, I ∈ A.

Definition 4. System S is called to be quasi-controllable if there is no nontrivial proper
subspace L ⊆ RN invariant for any matrix M ∈ A.

Denote by Ak (k = 1, 2, . . .) the set of all finite products of the matrixes from A with
not more then k multipliers. The set Ak(x) is the set of all vectors {Mx : M ∈ Ak}.
Denote by co(W ), absco(W ) and span(W ), correspondingly, the convex hull, the absolute
convex hull and the linear hull of the vector set W . Recall that the set W is absolutely
convex if it is convex and with any point x contains also the point −x. Absolutely convex
hull of W is the intersection of all absolutely convex sets containing W . Let B(t) be a
zero-centered ball of the radius t.

To some extent, the meaning of the quasi-controllability notion is clarified by the
following definition and theorem.

Definition 5. For any n ≥ N the n-measure of quasi-controllability of a desynchronized
system S is by definition the number

qcmn(S) = inf
x∈RN ,‖x‖=1

sup{ρ : B(ρ) ⊆ absco(An(x))}

Theorem 6. The n-measure of quasi-controllability is positive if and only if the system
S is quasi-controllable one.



Let us present the main result — the theorem on the a’priori estimation of the over-
shooting measure.

Theorem 7. Let the desynchronized system S be stable. Then for every n ≥ N it is true
the inequality

ovm(S) ≤ 1

qcmn(S)
.

Theorem 7 may be considered as a new type of uncertainty principle.
The last theorem is useful because often it is easy to obtain constructive lower estimate

for the measure of quasi-controllability (and therefore by Theorem 7 constructive upper
estimate for overshooting measure). Let us present one result of a kind. Matrix A = (aij)
with scalar entries is called to be irreducible if it cannot be represented in a block triangle
form by any renumeration of the basis elements in RN .

Theorem 8. The linear system S with the matrix A is quasi-controllable if and only if the
matrix A is irreducible and 1 is not its eigenvalue. Then the estimate qcmN(S) ≥ ακN−1

is true, where

κ =
1

2
min{|aij| : i 6= j, aij 6= 0}, α =

1

2N
min{‖(A− I)x‖ : ‖x‖ = 1}.

Proof. Let 1 be the eigenvalue of the matrix A. Denote by x∗ corresponding eigenvec-
tor. Then x∗ is an eigenvector corresponding to the eigenvalue 1 for any matrix Aω ∈ A.
So the system S is not quasi-controllable.

Suppose that the matrix A is reducible. We can suppose without loss of generality
that a certain subspace Ep = span{e1, e2, . . . , ep} (p < N) is invariant for the matrix A.
In this case the subspace Ep is invariant for any matrix Aω ∈ A. So the system S does
not possess the property of quasi-controllability in this case as well.

Let us prove the quasi-controllability of the system S in the case when 1 is not the
eigenvalue of the matrix A and the matrix A is irreducible. It is sufficient to prove for
any nonzero vector x ∈ RN the equality

span{AN(x)} = RN . (7)

Choose an arbitrary vector x ∈ RN , ‖x‖ = 1, and consider vectors (A1 − I)x, (A2 − I)x,
. . . , (AN − I)x ∈ span{A1(x)}. By definition of the ω-mixture of a matrix

(A− I)x = (A1 − I)x+ (A2 − I)x+ . . .+ (AN − I)x,

and 1 is not an eigenvalue of the matrix A. So at least one of vectors (A1−I)x, (A2−I)x,
. . . , (AN − I)x is not equal to zero. Assume without loss of generality that (A1− I)x 6= 0
and ‖(A1 − I)x‖ ≥ 1

N
‖(A− I)x‖ ≥ 2α. It is true the equality

(Ai − I)x = 〈ãi, x〉ei, (i = 1, 2, . . . , N), (8)

where 〈·, ·〉 denotes the Eucleadean scalar product in RN and vectors ãi are of the form

ãi = {ai1, ai2, . . . , aii − 1, . . . , aiN} (i = 1, 2, . . . , N).

So 〈ã1, x〉e1 6= 0, 〈ã1, x〉e1 ∈ span{A1(x)} and ‖〈ã1, x〉e1‖ ≥ 2α. Consequently

e1 ∈ span{A1(x)} (9)



and the vector 1
2
〈ã1, x〉e1 = 1

2
A1x − 1

2
x belongs to absco{A1(x)} ⊆ absco{AN(x)}. We

got the inclusion
αe1 ∈ absco{AN(x)}.

It follows from irreducibility of the matrix A that the subspace span{e1} is not invariant
with respect to A. In other words at least one of coordinates of the vector Ae1, which
number is not equal to 1, is nonzero. Assume without loss of generality that the second
coordinate Ae1 is not equal to zero. But the second coordinate of the vector Ae1 coin-
cides with the second coordinate of the vector A2e1 and also of the vector (A2 − I)e1.
Consequently (A2 − I)e1 6= 0. The inclusion (A2 − I)e1 ∈ span{A2(x)} follows now from
the last inequality and (9). In virtue of (8) we obtain

e2 ∈ span{A2(x)}.

Hence the vector 1
2
a21e2 = 1

2
〈ã2, e1〉e2 = 1

2
A2e1 − 1

2
e1 belongs to absco{A2(e1)} and

consequently to absco{AN(x)}. So

ακe2 ∈ absco{AN(x)}.

Analogously, it may be concluded from irreducibility of the matrix A that following to
proper renumeration of basis vectors e1, e2, e3, . . . , eN the inclusions

ei ∈ span{Ai(x)} (i = 1, 2, . . . , N), (10)

ακi−1ei ∈ absco{AN(x)}.

will be fulfilled. From (10) it follows the equality (7) and the estimate

qcmN(S) ≥ ακN−1.

Theorem 8 is proved.

CONCLUSION

In the paper systems with high level of failures are considered. Due to this feature
such systems permanently operate in a transient regime. That implies a possibility of
amplitude overshooting of system states before these states would appear sufficiently close
to equilibrium. In real systems amplitude restrictions for state variables are inevitable.
Therefore the overshooting can increase the number of secondary failures.

In the paper a new approach to reliability analysis is presented that is based on the
properties of the so called desynchronized systems. Thou all the facts are formulated for
linear time-invariant discrete event systems, they can be easily generalized to different
cases including many well known control systems. So, the idea of Theorem 7 concern-
ing relationship between overshooting measure and quasi-controllability measure may be
applied to a variety of classes of dynamic systems. This idea presents new possibilities
for studying of overshooting measure even for classical control systems with computers or
microprocessors in feedback links.



REFERENCES

Asarin, E.A., Kozjakin, V.S., Krasnoselskii, M.A., Kuznetsov, N.A. and Pokrovskii,
A.V., 1988, ”On some new types of mathematical models of complex systems”, Lect.
Notes in Contr. Sci., Vol. 105, pp. 10-26.

Asarin, E.A., Krasnoselskii, M.A., Kozyakin, V.S., Kuznetsov, N.A., 1990. ”Stability
analysis of desynchronized systems”, Preprints of the 11th IFAC World Congress, Tallinn,
Estonia, Vol. 2, pp. 56-60.

Bongiorno, J. and Youla, D., 1968, ”On observers in multivariable control systems”,
Intern. J. Contr., Vol. 8, 3, pp. 221-243.

Bertsekas, D.P., Tsitsiklis, J.N., 1988, ”Parallel and distributed computation. Nume-
rical methods”, Englewood Cliffs. NJ

Izmaylov, R.N., 1987, ”On transient responses in time-invariant linear systems”, Dokl.
AN SSSR, Vol. 297, 5, pp. 1068-1071 (in Russian).

Izmaylov, R.N., 1988, ”The peak effect in stationary linear systems with multivariable
inputs and outputs”, Automation and Remote Contr., Vol. 49, 1, pp. 40-47.

Kleptsyn, A.F., Krasnoselskii, M.A., Kuznetsov, N.A., Kozjakin, V.S., 1984, ”De-
synchronization of linear systems”, Mathematics and Computers in Simulation, Vol. 26,
pp. 423-431.

Kozyakin, V.S., 1991, ”Equivalent norms technique for stability analysis of linear dis-
crete event systems”, Proceedings of the 1991 IFAC Workshop on Discrete Event System
Theory and Applications in Manufacturing and Social Phenomena, June 25-27, 1991,
Shenyang, China, International Academic Publishers, A Pergamon - CNPIEC Join Ven-
ture, pp. 290-295.

Krasnoselskii, A.M., Krasnoselskii, M.A., Kuznetsov, N.A., 1991, ”Nonlinear systems
with partial corrections”, Dokl. AN SSSR, Vol. 318, 2, pp. 291-294 (in Russian).

Lehtomaki, N., Sandell, N. and Athans, M., 1981, ”Robustness results in linear-
quadratic gaussian based on multivariable control design”, IEEE Trans. Automat. Contr.,
AC-26, 1, pp. 75-93.

Mita, T., 1976, ”A note on a relation between zeros and initial response”, Trans. Soc.
Instr. and Contr. Eng., Vol. 12, 2, pp. 235-236.

Mita, T. and Yoshida, H., 1980, ”Eigenvector assignability and responses of the closed
loop systems”, Trans. Soc. Instr. and Contr. Eng., Vol. 16, 4, pp. 477-483.

Olbrot, A. and Cieslik, J., 1988, ”A qualitative bound in robustness of stabilization
by state feedback”, IEEE Trans. Automat. Contr., AC-33, 12, pp. 1165-1166.

Polotskii, V.N., 1978, ”On maximal error of asymptotic state identifier”, Automation
and Remote Contr., Vol. 39, 8, pp. 1126-1129.

Soroka, E. and Shaked, U., 1984, ”On the robustness of LQ regulators”, IEEE Trans.
Automat. Contr., AC-29, 7, pp. 664-665.

Zeitz, M., 1983, ”Transfer characteristics of extremely fast state feedback and observer
systems”, Intern. J. Systems Sci., Vol. 14, 2, pp. 169-177.


